Transcendence of generating functions whose coefficients are multiplicative

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 3 . 52 40 v 1 [ m at h . N T ] 3 0 M ar 2 00 9 TRANSCENDENCE OF GENERATING FUNCTIONS WHOSE COEFFICIENTS ARE MULTIPLICATIVE

Let K be a field of characteristic 0, f : N → K be a multiplicative function, and F (z) = P n≥1 f (n)z n ∈ K[[z]] be algebraic over K(z). Then either there is a natural number k and a periodic multiplicative function χ(n) such that f (n) = n k χ(n) for all n, or f (n) is eventually zero. In particular , the generating function of a multiplicative function f : N → K is either transcendental or r...

متن کامل

Semirings whose additive endomorphisms are multiplicative

A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.

متن کامل

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

Transcendence of Generating Functions of Walks on the Slit Plane

Consider a single walker on the slit plane, that is, the square grid Z 2 without its negative x-axis, who starts at the origin and takes his steps from a given set S. Mireille Bousquet-Mélou conjectured that – excluding pathological cases – the generating function counting the number of possible walks is algebraic if and only if the walker cannot cross the negative x-axis without touching it. I...

متن کامل

Duplication Coefficients via Generating Functions

In this paper, we solve the duplication problem

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2012

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2011-05479-6